On Wednesday 11 October 2023 we will run a nodegoat Workshop at Stockholm University. The workshop will take place between 10.00 and 16.30 at Bergsmannen, Stockholm University. This is an in-person event and registration is required. Registration deadline is 27 September.
The Scope functionality is used throughout nodegoat to traverse your data model and select elements to be included in a visualisation, analysis, or export. With the Scope, you can limit or expand your data selection. In a prosopographical analyses you might want to include all educational institutes related to one person, plus all the relations of these institutes, while omitting all other personal relations of a person. Follow this Guide to learn how to configure a Scope.
Chronology Statements that you make in nodegoat allow you to specify what you mean by a statement like 'circa'. Instead of using qualitative statements about vagueness, Chronology Statements provide you with a way of making quantitative statements about vagueness. Chronology Statements also allow you to make relational date statements: 'the date point is between the sending of letter X and the sending of letter Y'. Follow this Guide to learn how to store uncertain dates by using Chronology Statements and follow this Guide to learn how to store relational dates by using Chronology Statements.
The temporally-aware dynamic network analysis functionality makes the temporal options offered by the Chronology Statements available on any level of a Scope. This allows you to apply and pass temporality to time-bound connections in any of a Scope's paths. The dates from Chronology Statements can be sourced from every step in the traversal: ascendant or descendant nodes, and combinations. Selected configurations can be applied on any/all of the connections/edges: outbound or inbound directionality, and combinations.
Example: Academic Connections
With this functionality it is now possible to dynamically generate networks of people who attended the same educational institute at the same time, without specifying any dates in a filter. The temporally-aware dynamic network analysis functionality applies the initial date on every other relationship that appears on a specified path:
The obvious benefit of this approach is the scalability of this functionality, as it allows you to quickly scrutinise complex networks based on time-bound connections:[....]
This year the Leipzig Research Centre Global Dynamics (ReCentGlobe) has set up a nodegoat Grow installation to service two multi-year research projects. The project 'Die Produktion von Weltwissen im Umbruch' uses nodegoat to analyse the globalisation of knowledge production by mapping the development of Area Studies and Global Studies in the German context over the past 15 years. The project 'African non-military conflict intervention practices' uses nodegoat to build a comprehensive database of non-military interventions since 2004 by the African Union and by Regional Economic Communities.
As a result of this collaboration, the ReCentGlobe initiative organises a public nodegoat workshop within the framework of the Digital Lab infrastructure. The workshop will take place at the ReCentGlobe institute on 25 July 2023. More information about the programme and registration can be found here.
The TIC-Collaborative project of Ghent University and Maastricht University has published a dataset on international social reform congresses and organisations (1846-1914). This dataset has been created and maintained in a nodegoat installation at Ghent University since early 2014.
The data has been published as CSV files in the 'IISH Data Collection' repository and can be downloaded here. The dataset contains 1206 organisations, 1052 publications, 23247 people, 1690 conferences, and 35609 conferences attendance statements. All these statements have been enriched with spatial-temporal attributes which allows for the diachronic and geographic analysis and exploration of the relational data.[....]
nodegoat has been extended with four new features in the past months. These new features were commissioned by three research projects from Switzerland, Slovenia, and The Netherlands. All nodegoat users can now make use of these features.
Data Model Viewer
This feature has been commissioned by the Historical Institute of the University of Bern for the REPAC project.
When the complexity of the data model that you have implemented in nodegoat grows, it might be challenging to maintain an overview of all the Object Types, Object Descriptions, Sub-Objects, Sub-Object Descriptions, and all the relationships in between these elements. You can now generate an overview of all the elements of your data model that have been enabled in a Project.
Go to 'Management' and click the name of a Project that is listed in the overview of Projects. Set the 'Mode' to 'References Only' to hide all non-relational elements. Set the 'Size' to 'Full Height' to expand the height beyond the size of the window. You can specify a DPI value and download a 'png' version of the generated overview. To enhance the legibility of the graph you can reposition elements by means of dragging and dropping.[....]
The nodegoat Guides have been extended with a new section on 'Ingestion Processes'. An Ingestion Process allows you to query an external resource and ingest the returned data in your nodegoat environment. Once the data is stored in nodegoat, it can be used for tagging, referencing, filtering, analysis, and visualisation purposes.
You can ingest data in order to gather a set of people or places that you intend to use in your research process. You can also ingest data that enriches your own research data. Any collection of primary sources or secondary sources that have been published to the web can be ingested as well. This means that you can ingest transcription data from Transkribus, or your complete (or filtered) Zotero library.
Every nodegoat user is able to make use of these features. Next to the examples listed below, every endpoint that outputs JSON or XML can be queried. nodegoat data can be exported in CSV and ODT formats, or published via the nodegoat API as JSON and JSON-LD.
Wikidata
The first two guides deal with setting up a data model for places and people, and ingesting geographical and biographical data from Wikidata: 'Ingest Geographical Data', 'Ingest Biographical Data'. A number of SPARQL-queries are needed to gather the selected data. As writing these queries can be challenging, we have added two commented queries (here and here) that explain the rationale behind the queries.
These first two guides illustrate a common point in working with relational data (e.g. coming from graph databases, or relational databases): you need to first ingest the referenced Objects (in this case universities) before you can make references to these Objects (in this case people attending the universities).
The third guide covers the importance of external identifiers. External identifiers can be added manually, as described in the guide 'Add External Identifiers', or ingested from a resource like Wikidata, as described in the newly added guide 'Ingest External Identifiers'.[....]
We have added various new sections to the nodegoat documentation and have published this via a new publication platform on nodegoat.net: nodegoat.net/documentation. Next to a revision of the existing content, this update also brings documentation on new features such as Ingestion Processes and Reconciliation Processes.
We have also republished the Guides using the same publication platform: nodegoat.net/guides. This makes publishing new Guides much easier, so expect to see new content there as well. We have added one new Guide already: after feedback on the lack of a general introduction to the basic principles of nodegoat we have published the Guide 'Basic Principles'.
The new and existing content can now also be searched via nodegoat.net/search. Use this to find Blog Posts, Use Cases, Documantion Sections, or Guides that mention things like tags or apis.[....]